Total Printed Pages -11

F - 1480

C.B.S. (Eighth Semester) EXAMINATION, May - June, 2022 MATHEMATICS STREAM FOURIER ANALYSIS (M-801)

Time : Three Hours]

[Maximum Marks:40

Note : Attempt all sections as directed.

(Section-A)

(0.5 marks each)

P.T.O.

Choose the correct/most appropriate answer and write in your answer book:

- 1. If a periodic function f(x) is _____, its fourier expansion contains only cosine terms.
 - (A) Odd
 - (B) Even

(C) Multiple of 3

(D) Multiple of 5

- [2]
- 2. In fourier series, the function *f*(*x*) is
 - (A) Multivalued
 - (B) Infinite
 - (C) Finite
 - (D) Non-periodic
- 3. Fourier series of a discontinuous function is not ______ at all points.
 - (A) devergent
 - (B) Convergent
 - (C) Uniformly Convergent
 - (D) None of the above
- 4. A function *f*(*x*) is said to be even (or symmetric) function if,

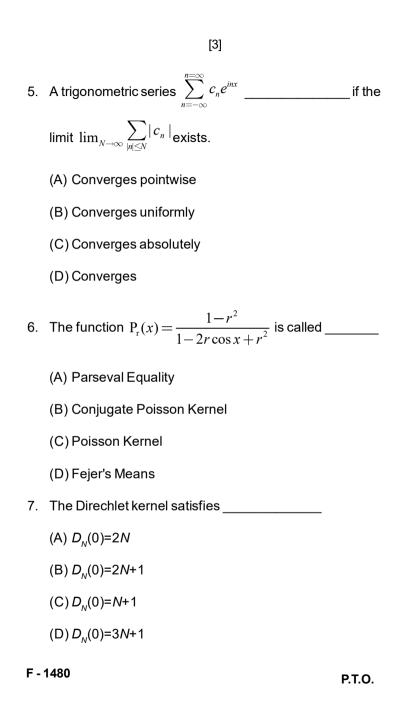
$$(\mathsf{A}) \ f(-x) = f(x)$$

$$(\mathsf{B}) \ f(-x) = f\left(\frac{x}{2}\right)$$

(C) $f(-x) = f\left(\frac{-x}{2}\right)$

(D)
$$f(-x) = f\left(\frac{-x}{4}\right)$$

F - 1480



	[4]
8.	Let $0 \le 1$, let f be an integrable function on $[a,b]$. Then
	(A) $\lim_{N\to\infty} \int_{a}^{b} f(t)D_{N}(t)dt = 0$
	(B) $\lim_{N\to\infty} \int_a^b f(t)D_N(t)dt = -1$
	(C) $\lim_{N\to\infty} \int_a^b f(t)D_N(t)dt = 1$
	(D) $\lim_{N\to\infty} \int_a^b f(t)D_N(t)dt = \frac{1}{2}$
9.	If $f(x) = e^{-\pi x^2}$ then
	(A) $\stackrel{\wedge}{f}(\xi) = f(\xi)$
	(B) $\stackrel{\wedge}{f}(\xi) = 3f(\xi)$
	(C) $\stackrel{\wedge}{f}(\xi) = 5f(\xi)$
	(D) $\stackrel{\wedge}{f}(\xi) = 2f(\xi)$
10.	If <i>F</i> (s) is the complex fourier transform of $f(x)$, then (A) $F{f(x-a)} = e^{isa}F(s)$
	(B) $F\{f(x-a)\} = e^{-isa}F(s)$
	(C) $F{f(x+a)} = e^{isa}F(s)$
	(D) $F{f(x+a)} = e^{-isa}F(s)$
F - '	1480

11. The Fourier sine integral of *f*(*x*) is given by _____

(A)
$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin \lambda x \int_{0}^{\infty} f(t) \sin \lambda t dt d\lambda$$

(B)
$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \sin \lambda x \int_{0}^{\infty} f(t) \sin \lambda t dt d\lambda$$

(C)
$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \sin \lambda x \int_{0}^{\infty} f(t) \cos \lambda t dt d\lambda$$

(D)
$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos \lambda x \int_{0}^{\infty} f(t) \cos \lambda t dt d\lambda$$

12. The Fourier cosine transform of e^{-x^2} is given by _____

(A)
$$F_c(e^{-x^2}) = \frac{\sqrt{\pi}}{2}e^{-x^2/4}$$

(B) $F_c(e^{-x^2}) = \frac{\sqrt{\pi}}{2}e^{-x^2/2}$
(C) $F_c(e^{-x^2}) = \frac{\sqrt{\pi}}{2}e^{-x^2/3}$
(D) $F_c(e^{-x^2}) = \frac{\sqrt{\pi}}{4}e^{-x^2/2}$

13. $e^{-|x|}$ decreases rapidly at _____, it is not differential at 0 and therefore does not belong to S(R).

[6]

- (A) 0.5
- (B) Infinity
- (C) zero
- (D)-0.5
- 14. Which one is correct?
 - (A) Schwartz space is not closed under differentiation and multiplication by polynomials
 - (B) If $f \in S(R)$ then $\stackrel{\wedge}{f} \notin S(R)$
 - (C)Schwartz space is closed under differentiation and multiplication by ploynomials
 - (D) \hat{f} is not bounded and not continous
- 15. A function f defined on R is said to be of ______ if f is continuous and there exists a constant A>0 so that

$$|f(x)| \leq \frac{A}{1+x^2}$$
 for all $x \in R$

- (A) Moderate Increase
- (B) Moderate Constant
- (C) Moderate Decrease
- (D) None of the above

F - 1480

F - 1480

- 16. If $f, g \in S(R)$ then ______ (A) f * g = g * f(B) $f * g \neq g * f$ (C) $f * g = \frac{g}{2} * f$ (D) $f * g = \frac{g}{4} * f$ 17. Let $\langle T_n \rangle$ be a sequences in S*. We say that $\langle T_n \rangle$ ______ to T in S* iff $\lim_{n \to \infty} \langle T_n, \varphi \rangle = \langle T, \varphi \rangle$ for every $\varphi \in S$
 - (A) Uniformly converges
 - (B) Diverges
 - (C) Converges
 - (D) Pointwise converges
- 18. The \propto th distributional derivative of T is the tempered distribution $\partial \propto$ T defined by

(A)
$$\langle \partial^{\alpha} T, \varphi \rangle = (-1) \langle T, \partial^{\alpha} \varphi \rangle$$
 for all $\varphi \in S$

(B) $\langle \partial^{\alpha} T, \varphi \rangle = \langle T, \partial^{\alpha} \varphi \rangle$ for all $\varphi \in S$

(C)
$$\langle \partial^{\alpha} T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} \varphi \rangle$$
 for all $\varphi \in S$

(D)
$$\langle \partial^{\alpha}T, \varphi \rangle = (-2) \langle T, \partial^{\alpha}\varphi \rangle$$
 for all $\varphi \in S$

19. The function $\left(\frac{1}{x}\right)$: $R/0 \rightarrow R$ has ______at x=0, so

[8]

- it does not define a regular distribution.
- (A) Singularity
- (B) Integrable singularity
- (C) Non-integrable singularity
- (D) None of the above
- 20. The topological dual space of S, denoted by S^{*} or S' is the space of continuous linear functionals $T:S \rightarrow C$. Elements of S^{*} are called ______
 - (A) Principal value distribution
 - (B) Finite part distribution
 - (C) Tempered Distributions
 - (D) Sinc Distributions

(Section-B)

(0.75 marks each)

Note-Answer the following very short answer type questions in 2-3 sentences each :

- 1. Write about Odd functions.
- 2. Write about Half Range Series.
- F 1480

[9]

- 3. State Uniqueness of Fourier Series.
- 4. Define Convolution of two functions.
- 5. Write the properties of fourier transform on Schwartz space.
- 6. Write about Shifting Property of Fourier Transform.
- 7. Define Schwartz Space.
- 8. Write one property of fourier transform on the Schwartz space.
- 9. Write about Polynomial growth.
- 10. Define Schwartz function.

(Section-C)

(1.25 marks each)

Note- Answer the following short answer type question in $<\!75$ words:

1. Find a fourier series to represent

 $f(x) = \pi - x$ for $0 < x < 2\pi$

- 2. Write about the fourier series for discontinuous functions.
- 3. Write about Abel means and summation.
- 4. Write about Mutually orthogonal set.
- 5. Write the Parseval's Identity for Fourier Transform.
- 6. State and prove Poisson Summation Formula.
- F 1480 P.T.O.

- [10]
- 7. If $f \in S(R)$, then prove that $(f^*K_{\delta})(x) \to f(x)$

uniformly in $x \text{ as } \delta \rightarrow 0$.

- 8. State and prove Plancherel Theorem.
- 9. Write about Translator operator and Reflector operator.
- 10. Write about the application of Tempered distribution in partial differential equation.

(Section-D)

(2 marks each)

Note- Answer the following long answer type question using 175 words:

1. Find the fourier half range cosine series of the function

$$f(t) = \begin{cases} 2t, 0 < t < 1 \\ 2(2-t), 1 < t < 2 \end{cases}$$

OR

Obtain the fourier cosine series expansion of the periodic

function defined by
$$f(t) = \sin\left(\frac{\pi t}{l}\right), 0 < t < l$$

2. State and prove Fejer's Theorem?

OR

F - 1480

[11]

Write about a continuous function with divergent fourier series.

3. Derive the formula for Fourier Transform.

OR

Find the fourier transform of the function-

$$f(x) = \begin{cases} l + \frac{x}{a}, (-a < x < 0) \\ l - \frac{x}{a}, (0 < x < a) \\ 0, otherwise \end{cases}$$

4. State and prove Fourier Inversion Theorem.

OR

State and prove Riemann Lebesgue Lemma.

5. State and prove Convolution for Tempered Distribution.

OR

Write about the Fourier transform of tempered distributions.